WWW.PHYSICSPHENOMENA.COM

Topic #01 Physics - A Mathematical Science

Problem Set 01

 Topic #01 Concepts and Skills Link to "Concepts and Skills"

 Vocabulary, Variables and Equations metric system: A set of standards of measurement where units of different sizes are related to by powers of ten SI: International standards of measurement adapted from the metric system base unit(s): The seven fundamental SI units of measure  meter: The SI base unit of length second: The SI base unit of time kilogram: The SI base unit of mass mks system: A system of measurements that are based upon the meter, kilogram and the second.  fundamental unit(s): A term referring to any of the of the seven base units in the SI standards of measurement derived unit(s): A unit of a measurement that is defined by the combination of two or more fundamental (base) units scientific notation: The expression of numbers as powers of ten factor-label method: The method of converting a quantity expressed in one unit to that quantity in another unit precision: The degree of exactness with which a quantity is measured using a given instrument (measuring tool)  accuracy: How well the results of an experiment agree with the measured measured accepted value. (This also applies to measurements made in situations other than experiments.) parallax: The apparent shift in position of an object when it is seen from differet angles (This is important to know about when making measurements) significant digits: All valid digits in a measurement (There are rules about this; know them) metric prefixes: Define the following.prefixes. tera, giga, mega, kilo, hecto, deca, deci, centi milli, micro, nano, pico, femto

 Review Questions: Reviewing Concepts Questions: 1. Define Physics in your own words. 2. Why is mathematics important to science? 3. Assume for a moment that the theory of matter held by some of the ancient Greeks is correct.  How does this theory explain the motion of the four elements?

 Application Questions: Chapter 1 Applying Concepts Questions 4. Give some examples of applications that resulted from work done by  Physicists. 5. Give some examples of application s that have resulted from work done by  Physicists on the exploration of space. 6. Research the aspects of nature investigated by each of the following  kinds of scientists: astrophysicists, astronomers, biophysicists,  Exobiologists, and geophysicists. 7. Some of the branches of physics that you will study in this course  investigate motion, the properties of materials, sound, light, and electricity  and magnetism, properties of atoms, and nuclear reactions.  Give at least  one example of an application of each branch. 8. What reason might the Greeks have had not to question the evidence that  heavier objects fall faster than lighter objects?  Hint: did you ever  question which falls faster? 9. Is the scientific method a clearly defined set of steps and procedures?  Support your answer. 10. Why will the work of a physicist never be finished?

 Word Problems: Problem Set #1:  Follow the written directions unless indicated otherwise by your instructor. 1. Convert each of the following length measurements to its equivalent in meters.  a. 1.1 cm   b. 76.2 pm   c. 2.1 km  d. 0.123 mm 2. Rank the following mass measurements from smallest to largest.  11.6 mg 1021 mg  0.6 cg          0.31 mg Problems 3-9 Convert each value to scientific notation.  3.  a. 5,800 m  b. 450,000 m  c. 302,000,000 m d.86,000,000,000 m 4.  a. .000508 kg b. 0.0000045 kg c. 0.0036 kg  d. 0.004 kg  5.  a. 300,000,000 s b. 186,000 s  c. 93,000,000 s 6.  a.0.0073 m  b. 0.00087m  c. 0.0032 m 7. a. 5,000,000,000,000,000,000,000,000 m  b. 0.000000000000000000166 m    [ 0.{18 zeros}166]     c. 2,033,000,000 m  d. 0.0000001030 m 8. a. 65,000 kg  b. 5,000,000 s  c. 226 m d.  4500 s 9. a. 0.025 m  b.  0.00025 m  c. 0.0006 s d. 0.00000000000019 s Note: Express your answers in scientific notation.  [Note:  2.5x10^2 represents 2.5 x 10 raised to the second power. If you find it more comfortable to rewrite the numbers written in this way before solving the problems, do so.] 10.  a. 5x10^7 m + 3x10^7 m       b. 6x10^8 m +2x10^8 m         c. 4.2x10^4 m + 3.6x10^4 m         d.  1.8x10^9 m + 2.5x10^9 m 11.  a. 5x10^-7 kg + 3x10^-7 kg        b. 4x10^-3 kg +3x10^-3 kg         c. 1.66x10^-19 kg + 2.3x10^-19 kg        d. 7.2x10^-12 kg - 2.6x10^-12 kg 12.  a. 6x10^8 cm - 4x10^8 cm       b. 3.8x10^12 cm - 1.9x10^12 cm        c. 5.8x10^9 cm - 2.8x10^9 cm       d. 6.25x10^4 cm - 4.5x10^4 cm   13.  a. 6x10^-8 m2 - 4x10^-8 m2.       b. 3.8x 10^-12 m2 - 1.9x10^-11 m2.        c. 5.8x10^-9 m2 - 2.8x10^-9 m2.       d. 2.26x10^-18 m2 - 1.80x10^-18 m2. 14  a. 6x10^8 kg + 4x10^7 kg      b. 7x10^4 kg + 2x10^3 kg       c. 4x10^4 kg + 3x10^5 kg      d. 6x10^10 kg + 5x10^11 kg 15  a. 5x10^-7 cg + 4x10^-8 cg      b. 6x10^-3 cg + 2x10^-4 cg       c. 3x10^-14 cg + 2x10^-15 cg      d. 4x10^-12 cg + 6x10^-13 cg 16  a. 5x10^-7 L - 4x10^-8 L      b. 6x10^-3 L - 2x10^-4 L       c. 3x10^-14 L - 2x10^-15 L      d. 8.2x10^-16 L - 4.5x10^-17 L 17  a. 6x10^8 m + 3x10^8 m      b  2.2x10^4 m + 3.6x10^4 m       c. 5x10^8 m + 6x10^7 m      d  9.8x10^5 m + 2x10^4 m 18  a. 8.4x10^-8 g - 3.2x10^-8 g      b. 5.4x10^7 g - 3.4x10^7 g       c. 6x10^-8 g - 6x10^-9 g      d. 2.2x10^12 g - 8x10^11 g Solve each problem expressing the answer in scientific notation. 19. a. (2x10^4 m) (4x10^8 m)       b. (3x10^4 m) (2x10^6 m)       c. (6x10^-4 m) (5x10^-8 m)       d. (2.5x10^-7 m) (2.5x10^16 m) 20. a. 6x10^8 kg / 2x10^4 m3.       b. 6x10^8 m / 2x10^-4 s       c. 6x10^-8 kg / 2x10^4 m3.        d. 6x10^-8 m / 2x10^-4 s 21. a. (3x10^4 kg) (4x10^4 m) / 6x10^4 s       b. (2.5x10^6 kg) (6x10^4 m) / 5x10^-2 s2. In problems 22 and 23 state the number of significant digits for each value. 22. a. 2804 m   b. 2.84 m  c. 0.0029 m       d. 0.003068 m  e. 4.6x10^5 m  f. 4.06x10^5 m  23. a. 75 m   b. 75.00 cm  c. 0.007060 kg       d. 1.87x10^6 m   e. 1.008x10^8 m f.  1.20x10^-4 m Using the rules for working with significant digits, solve the following problems. 24. Add 6.201 cm, 7.4 cm, 0.68 cm, and 12.0 cm 25. Add 28.662 m, 32.34 m, and 17.5 m.  26. Add 26.38 kg, 14.531 kg, 30.8 kg. 27. The sides of a quadrangular plot of land are measured. Their lengths are found to be        132.68 m, 48.3 m, 132.736 m, and 48.37 m. What is the perimeter of the plot of land as can        best be determined from these numbers. 28. Subtract 8.264 g from 10.8 g. 29. Subtract 26.82 mL from 44.12 mL. 30. A water tank has a mass of 3.64 kg when empty and a mass of 51.8 kg when filled to a       certain level.  What is the mass of the water in the tank?   Solve the following problems using the rules for significant digits. 31. a. 131 cm x 2.3 cm       b. 6.87 cm x 2.2 cm       c. 3.2145 km x 4.23 km 32. a. 20.2 cm / 7.41 s       b. 3.1416 cm /  12.4 s       c.  64.39 m / 13.6 s 33. A rectangular floor has a length of 15.72 m and a width of 4.40 m. Calculate the area of the        floor to the best possible value using these measurements.